Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia.
نویسندگان
چکیده
The synchrony of neural firing is believed to underlie the integration of information between and within neural networks in the brain. Abnormal synchronization of neural activity between distal brain regions has been proposed to underlie the core symptomatology in schizophrenia. This study investigated whether abnormal synchronization occurs between the medial prefrontal cortex (mPFC) and the hippocampus (HPC), two brain regions implicated in schizophrenia pathophysiology, using the maternal immune activation (MIA) animal model in rats. This neurodevelopmental model of schizophrenia is induced through a single injection of the synthetic immune system activator polyriboinosinic-polyribocytidylic acid, a synthetic analog of double-stranded RNA, a molecular pattern associated with viral infection, in pregnant rat dams. It is based on epidemiological evidence of increased risk of schizophrenia in adulthood after prenatal exposure to infection. In the present study, EEG coherence and neuronal phase-locking to underlying EEG were measured in freely moving MIA and control offspring. The MIA intervention produced significant reductions in mPFC-HPC EEG coherence that correlated with decreased prepulse inhibition of startle, a measure of sensory gating and a hallmark schizotypal behavioral measure. Furthermore, changes in the synchronization of neuronal firing to the underlying EEG were evident in the theta and low-gamma frequencies. Firing within a putative population of theta-modulated, gamma-entrained mPFC neurons was also reduced in MIA animals. Thus, MIA in rats produces a fundamental disruption in long-range neuronal synchrony in the brains of the adult offspring that models the disruption of synchrony observed in schizophrenia.
منابع مشابه
Aberrant neural synchrony in the maternal immune activation model: using translatable measures to explore targeted interventions
Maternal exposure to infection occurring mid-gestation produces a three-fold increase in the risk of schizophrenia in the offspring. The critical initiating factor appears to be the maternal immune activation (MIA) that follows infection. This process can be induced in rodents by exposure of pregnant dams to the viral mimic Poly I:C, which triggers an immune response that results in structural,...
متن کاملTargeting Neural Synchrony Deficits is Sufficient to Improve Cognition in a Schizophrenia-Related Neurodevelopmental Model
Cognitive symptoms are core features of mental disorders but procognitive treatments are limited. We have proposed a "discoordination" hypothesis that cognitive impairment results from aberrant coordination of neural activity. We reported that neonatal ventral hippocampus lesion (NVHL) rats, an established neurodevelopmental model of schizophrenia, have abnormal neural synchrony and cognitive d...
متن کاملTitle of Dissertation: Neurophysiological Effects of NMDA Receptor Antagonism in Adolescence vs. Adulthood: EEG as a Translational Tool to Study Schizophrenia
Title of Dissertation: Neurophysiological Effects of NMDA Receptor Antagonism in Adolescence vs. Adulthood: EEG as a Translational Tool to Study Schizophrenia Elyse M Sullivan, Doctor of Philosophy, 2014 Dissertation Directed by: Patricio O’Donnell, Professor, Program in Neuroscience Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and hu...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملBehavioral phenotypes in schizophrenic animal models with multiple combinations of genetic and environmental factors.
Schizophrenia is a multifactorial psychiatric disorder in which both genetic and environmental factors play a role. Genetic [e.g., Disrupted-in-schizophrenia 1 (DISC1), Neuregulin-1 (NRG1)] and environmental factors (e.g., maternal viral infection, obstetric complications, social stress) may act during the developmental period to increase the incidence of schizophrenia. In animal models, intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 37 شماره
صفحات -
تاریخ انتشار 2010